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This paper analyzes the possible implications of interpreting the finite- 
dimensional representations of canonically conjugate quantum mechanical posi- 
tion, and momentum operators of a particle consistent with Weyl's form of 
Heisenberg's commutation relation as the actual position, and momentum opera- 
tors of the particle when it is confined to move within a finite spatial domain, 
and regarding the application of current quantum mechanical formalism based 
on Heisenberg's relation to such a situation as an asymptotic approximation. In 
the resulting quantum mechanical formalism the discrete and finite position and 
momentum spectra of a particle depend on its rest mass and the spatial domain 
of confinement. Such a "finite-dimensional quantum mechanics" may be very 
suitable for describing the physics of particles confined to move within very 
small regions of space. 

1. I N T R O D U C T I O N  

As  is wel l  k n o w n ,  t hough  H e i s e n b e r g ' s  q u a n t u m  c o m m u t a t i o n  r e l a t ion  

[ O , p ] = i h  ( l )  

for  pos i t i on  o p e r a t o r  q a n d  c o n j u g a t e  m o m e n t u m  o p e r a t o r p  does  n o t  a d m i t  
f i n i t e - d i m e n s i o n a l  r ep resen ta t ions ,  the  e q u i v a l e n t  W e y l ' s  f o r m  of  (1), 

0 ~  = e x p ( i a f i / h  ) ~ l ) ~  (2) 
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with 

G = e x p ( i ~ / h  ) (3) 

=exp(i~q/h) (4) 

has finite-dimensional realizations (Weyl, 1932). Based on this fact, Weyl 
(1932) analyzed quantum kinematics as an Abelian group of ray rotations of 
the system space and concluded as follows: 

We have thus found a very natural interpretation of quantum kinematics as described by 
the commutation relations. The kinematical structure of a physical system is expressed by an 
irreducible Abelian group of unitary ray rotations in system space. The real elements of the 
algebra of this group are the physical quantities of the system; the representation of the 
abstract group by rotations of the system space associates with each such quantity a definite 
Hermitian form which "represents" it. If the group is continuous this procedure automatically 
leads to Heisenberg's formulation .... Our general principle allows for the possibility that the 
Abelian rotation group is entirely discontinuous, or that it may even be a finite group .... But 
the field of discrete groups offers many possibilities which we have not yet been able to realize 
in Nature; perhaps these holes will be filled by applications to nuclear physics. However, it 
seems more probable that the scheme of quantum kinematics will share the fate of the general 
scheme of quantum mechanics; to be submerged in the concrete physical laws of the only 
existing physical structure, the actual world. 

Keeping in mind the above prophetic statement of Weyl, we shall 
analyze in this paper the possible implications of interpreting the finite- 
dimensional representations of 0 and/~ consistent with (2)-(4) as the actual 
position and momentum operators of a particle confined to move within a 
finite spatial domain, and regarding the application of current quantum 
mechanical formalism based on (1) to such a situation as only an asymptotic 
approximation. 

Weyl (1932) and Schwinger (1960) studied the finite-dimensional ver- 
sion of (2) essentially as part  of an intermediate step in a limiting process 
for the understanding of quantum mechanics based on (1). Many direct 
physical applications of the finite-dimensional form of (2) have been 
studied recently by Alladi Ramakrishnan and his collaborators (Alladi 
Ramakrishnan, 1972) as part  of an extensive analysis of generalized Clifford 
algebras (see for instance, Alladi Ramakrishnan, 1971, 1972, for mathemati-  
cal literature on generalized Clifford algebras). The present work stems from 
certain essential modifications of ideas on the possible existence of a 
quantum mechanics in discrete space, in view of Weyl's work on the 
finite-dimensional realization of (2), emphasized very much by one of us in 
recent years (see Santhanam and Tekumalla, 1976; Santhanam, 1977, 1978). 

Models of discrete space-time have been discussed by physicists for a 
long time from many points of view (see for instance, Finkelstein, 1974; 
Lorente, 1974; Ginsburg, 1976; Dadic and Pisk, 1979; Stovicek and Tolar, 
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1979, for recent discussions of the subject and detailed references to earlier 
literature). The basic difference between our ideas presented here and the 
earlier ideas is that instead of an absolutely quantized space-time with 
universal minima of length and time or some kind of lattice structure 
common to all matter, the position spectrum of any particular particle is 
considered to depend on its rest mass, and the possible extent of its motion 
in space and time is considered to be an independent continuous parameter 
as usual. In this paper we shall limit ourselves to the detailed consideration 
of only one-dimensional space, and generalization to isotropic three- 
dimensional space should be straightforward when coordinate operators for 
different directions are assumed to commute as usual in the present quan- 
tum mechanics (see Snyder, 1947, for a different point of view). 

2. F O R M U L A T I O N  O F  THE FINITE-DIMENSIONAL 
QUANTUM MECHANICS 

Throughout this paper we shall consider any (2J+l)-dimensional 
matrix to have its rows and columns labeled by integers from - J  to J as 
( - J ,  - J +  1,..., - 1,0, 1,..., J -  1, J} and following the Dirac notation the 
nn'th matrix element of an operator or matrix M will be denoted by 
(nlM I n'). Then let Nj and ~j be (2J+  1)-dimensional Hermitian matrices 
with 

(5) 

1 J [i2~rs(n--n')} 
(nl%ln'>-= ( 2 J + l )  ]~ sexp 2 J + l  

S ~ - - J  

to[  ] if =n, = i 2~rJ(n-n') 
~csc 2 J + l  ifnv~n' 

(6) 

The matrices Nj and ~s are related to each other as 

% =SjNjS/  (7) 

where S s is the unitary finite Fourier transform matrix defined by 

1 <n[SjIn')=(nl(ST')*ln')- (2j+ 1)1/2 exp (-fJ+]-)i27rnn' (8) 
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This matrix Sj is equivalent to the (2 J+  1)-dimensional Sylvester matrix S s 
with 

(ni$,ln,)_ 1 [ i 2 7 r ( n + J ) ( n ' + J )  ] 
( 2 J + l )  '/2 exp 2 J + l  (9) 

Let us now define the Hermitian matrices, 

Qj : { j N j  (10) 

(11) 

where ej and ~j are real positive constants. Then the (2J+  1)-dimensional 
unitary matrices, 

U,{j = exp(inc~Pj/h ) (12) 

Vtn J = exp (iln: Qj / h  ) ( 13 ) 

defined analogous to 05 and ~ ,  obey the relation 

Un{jVtn ~ =exp{ in%hls /h )V tn jUn{  J V n , / = 0 , - +  1,--2 .... (14) 

exactly similar to (2) if 

{jTIj _ 2r (15) 
h 2 J + l  

Further the matrices in (12) and (13) provide unique irreducible representa- 
tion of (14) up to equivalence and constant multiplication factors (Weyl, 
1932). 

The finite Fourier transform matrix S s of (8) has the following proper- 
ties: 

S j Q j S j  -1 = ({j/~lj)Pj 

S jP jS j -  ' = - ( os / c  j )Qs  

S 2 Q j S j  -2 = _ Qj  

s~ e ,  s i  2 = - pj 

(nla~ln')=~.,_~ 

S r  

where I s is the (2 J+  1)-dimensional identity matrix. 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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In our opinion a reasonable physical interpretation of the above set of 
relations (5)-(21) in the light of Weyl's remarks is that the quantum 
dynamics of a particle of rest mass m confined to move within a one- 
dimensional region of fixed length L might be based on the following 
principles: 

(I) The position eigenvalues of the particle form a discrete and finite set 
(qjn) given by 

qsn =ncs ,  n =  - J , - J +  1 , . . . , -  1,0,1,.. . ,  J -  1, J. (22) 

and characterized by a "space quantum number" J such that 

2Jr s ~<L<2( J+  1)r (23) 

when obviously there is no distinction between positive and negative direc- 
tions with respect to the center of L taken as the origin of the coordinate 
system. In other words the quantum mechanical system space of the particle 
is ( 2 J +  1)-dimensional vector space with a unique value for the space 
quantum number J; corresponding particle operators are ( 2 J §  
dimensional matrices; and the basic position operator Q is given in position 
representation by 

<nlQIn'>=<nlQjIn'> =ncjr~,, 

n , n ' = - J  . . . . .  - 1 , 0 , 1  .....  J ,  

2 J ~ j < ~ L < 2 ( J + I ) r  1 (24) 

Physically 2J% gives the dimension of the region of confinement of the 
particle. 

(II) The momentum operator P conjugate to Q is given in position 
representation by 

"OJ <ntPln'>=<nlPJln'>-- 2J+1 
J [ i2 s(n-n')] 

sexp[ ~--q2 ~ 
s = - - J  

= 2 r J ( n - n ' )  
csc 2 J +  1 

if n = n '  

if ng=n' 

n , n ' = - J  . . . . .  - 1 , 0 , 1  .. . . .  J (25) 
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and consequently the momentum eigenvalues of the particle also form a 
discrete and finite set { PJn} such that 

pj,=n*lj, n = - J , - J + l  ..... -1 ,0 ,1  . . . . .  J - 1 , J  (26) 

(III) The quantum of position % and the quantum of momentum ~/j are 
related to Planck's constant h as 

ejT/j _ 2~r 
h 2 J + l  

(27) 

(IV) Among the simplest dimensionless quantities that can be derived 
from the fundamental quantities, e j, 7/j, m, h, and the speed of light c, the 
most important are (i) (cj~j/h) due to its occurrence in the finite- 
dimensional version of Weyl's relation defined by (12)-(14) and (ii) 
(~l~h/ejm2c 2) due to the fact that the ratio (~/j/~.r) occurs in the basic 
relations (16) and (17) connecting Qj and Pj. Since the m-independent 
dimensionless quantity (es~j/h) depends only on the space quantum 
number J, as seen from (27), the other significant dimensionless quantity 
(71sh/cjm2c 2) may be an intrinsic property of the particle independent of J. 
Thus let 

~sh =0, VJ (28) 
~jm2c 2 

where 0 is independent of J. 
(V) For the given values of m and L the quantities J, c j, and 7/j are 

uniquely determined by the relations in (23), (27), and (28). Further J, c j, 
and ~/j are such that 

when L--, oe, J ~ c r  cs~0 ,  2Jes-~ ~ ,  7/s --, 0. (29) 

(VI) If an observable K of the particle is represented by the operator 
/s P) in the normal quantum mechanical formalism then it will now be 
represented by the matrix Kj(Qj , Pj) obtained from k(0,  p) by the rule of 
replacement 

0 ~ Q j ,  P ~ Pj (30) 

and the eigenvalues of the matrix Kj(Q:, Pj) are the values that the 
observable K can take. For example (p2/2m+ 1. o~z,-~2~ will represent the r n  ~Zj.~ 
Hamiltonian operator corresponding to the nonrelativistic harmonic oscilla- 
tion of the particle with a frequency ~o and the eigenvalues and the 
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eigenvectors of the matrix {p2/2m+ 1 2 2 -~mw Q~t} will characterize the corre- 
sponding energy eigenstates. 

(VII) Except for the replacement of the operators by finite-dimensional 
matrices all other aspects of the usual quantum theory can be assumed to be 
valid in general. For example, Born's probabilistic interpretation of state 
vectors is applicable, expectation values of the observables can be defined in 
the usual manner, Heisenberg's uncertainty principle exists since Qj and Pj 
do not commute, time is regarded as an independent continuous parameter, 
and the temporal development of the state vector [q~(t))j of the particle is 
governed by the SchrOdinger equation 

ih I (t)>j:njl (t)>j (31) 

with Hj as the Hamiltonian matrix or for any observable K the rate of 
change of the corresponding matrix in the Heisenberg picture is defined by 

( dK [ OKj i[H,,Kj ] 
at 

(32) 

We may call the quantum mechanical formalism based on the above 
postulates (I)-(VII) the "finite-dimensional quantum mechanics" (FDQM). 

It is to be noted that while postulates (I)-(III) and (V)-(VII) are 
consequences of (5)-(21), (23), (27), and (28) and the general philosophy of 
the correspondence principle of Bohr, postulate (IV), based on the belief in 
the simplicity of the laws of Nature, is yet to be justified by a reasonably 
significant determination of the value of 0 in (28). This will be achieved in 
the following sections. 

Before dosing this section let us observe the important fact that the 
above formulation of the FDQM conforms to the general philosophy of 
Bohr's correspondence principle, as mentioned above. Let a ( 2 J+ l ) -  
dimensional vector [if) denote a quantum state of the above particle. For 
the sake of notational simplicity we shall omit hereafter the subscript J for 
e j, ~/j, etc. whenever its value is clear from the context. Then following the 
Dirac notation we shall prescribe the components of [~) in position 
representation by ( ( n c l + ) l n - - - J ,  . . . .  J}. Equations (24) and (25) imply 
that 

(33) 

1 J J [i21rs(n--n')](n'e[~) (34) 
(n ' JP~) -  (2 J+1)  ~ ~ srlexp 2 J + l  

n ' =  - - J  s =  - - J  
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When L is infinitely large J is also infinitely large and e and 7/ become 
infinitesimally small according to the postulate (V) above so that we can  
regard ne, n'e, and srl in (33) and (34) as almost continuously varying from 
- o e  to oc. Then replacing the quasicontinuous variables no, n'e, and sT/, 
respectively by q, q', and p we can rewrite (33) and (34) with the aid of (27) 
a s  

(qlQg') =q( ql +) = ( ql 0@) (35) 

1 J J [i2~rs(n-n')](n,cl~p ) 
(q lP~) -  2 J + l  • ~ s~/exp 2 J + l  / l 

r/~= - - J  s = - - J  

Jc ,n [i2rrs~l(nc--n',) ] 
_ 1 Y~ e E rlsr/exp[ ~ - 4 - i } - ~  ]<n'el~k) 

( 2 J +  1)cT/ , , ,=_j,  sn TM-Jn 

2~hf~_ dq'ff  dppexp ip(q-q')  

= - ih~q(ql+ ) 

=(ql/34')  (36) 

Thus it follows that we may regard the application of the current quantum 
mechanical formalism with 0 and/3 equivalent to the Schr6dinger represen- 
tation 

( q[gtq,)=q( ql~p ) (37) 

(q[/3~p) = -ihff---~(ql~p) (38) 

in accordance with the Heisenberg relation (1) as really an asymptotic 
approximation valid in the case described by (I)-(VII) above only when L is 
infinitely large. In other words the FDQM characterized by a space quan- 
tum number J approaches the usual quantum mechanics irrespective of the 
mass of the particle when J becomes infinitely large as required by the 
general philosophy of Bohr's correspondence principle. But if L is small for 
a particle as for the constituents of atomic nuclei the FDQM based on the 
above postulates (I)-(VII) may be very appropriate, 
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3. ON THE VALUE OF 0 

Let us first observe that the relations in (16)-(21) are completely 
analogous to the well-known relations in the usual quantum mechanics 
given by 

SOS -~ =P (39) 

;~PS - '  = - q  (40) 

(S:)0(SZ) - ' =  - q  (41) 

(,.~2)p (~2)- ,  = _ff (42) 

(qlg2lq ') = 6 ( q +  q') (43) 

(qlS4lq ') = 6 ( q - q ' )  (44) 

where S is the unitary Fourier transform operation defined by 

1 ~dq,exp(iq_~)(q,  I (45) (qlS~)- (2~rh)l/2 s  ~) 

Actually in the asymptotic limit when J--, m (16)-(21) must transform 
themselves into (39)-(44), respectively. Further it is evident that the choice 
of an odd number of quantized values for q and p in the FDQM is due to 
the requirement of existence of a parity operator in the form of Sf as in 
(18)-(20) in exact analogy with the case of ~2 which represents the parity 
operator in the usual quantum mechanics as seen from (41)-(43). We shall 
utilize this close analogy between the operator S and the matrix S~ for a 
determination of the important constant 0 of the FDQM. 

It is known that the operator S can be represented as 

S : e x p  { 2 [~h (P2 + 0 2 ) -  1]  } 

1  46, 

and hence the operator [(ilr/4h)(ff z + 0 e - h ) ]  may be regarded as the 
logarithm of S (see for instance Jauch, 1968; Wolf, 1979). Then it is seen 
that the operator ~ occurring in (46) is the normal quantum mechanical 
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Hamiltonian operator corresponding to the linear nonrelativistic harmonic 
oscillation of a particle of unit mass with unit frequency. In analogy with 
this situation let us investigate whether the matrix Sj can be written in the 
form 

(47) 

analogous to (46) where ~j is a constant and %:  is a Hamiltonian matrix 
associated with an "intrinsic" oscillatory motion of the particle of given 
mass m such that the pair of relations 

~ [~j ,  Q.r] - Ps (48) 
h - m  

i [ ~cj, P~]= -m~o~Qj 
h (49) 

is a result of the equations of motion given in (32) when it is required that in 
the Heisenberg picture 

dP 
)g=  - m 4 Q  J (51) 

as is usual for a normal nonrelativistic quantum oscillator. The fact that in 
this case the Hamiltonian matrix ~ g  must be associated with an "intrinsic" 
harmonic oscillation of the particle is clear from the observation that the 
normal Hamiltonian matrix 2 ~ 2 2 (Pj /2m+ ~rno~yQj} that would correspond to 
this case according to postulate (VI) above cannot satisfy (48) and (49) as 
required. 

Now using (10), (11), and (15) we can rewrite (48) and (49) as 

i[Ar, Nj]=~:~j 

i[ Aj, dpj ]=--- - (1/ffj)Ns 

(52) 

(53) 

respectively with 

~J (54) A j - -  h~0j 

n, (55) 
mO~gq, 
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Then from (16), (17), (47), and (54) it is found that we must have 

i T  
-~-Ao" ) = %  (56) 

exP(2Ao')~o'exp(-2Ao')=-No" (57) 

But (52) and (53) would be consistent with (56) and (57) if and only if 

(5s) 

o r  

~0j= ~__..L_J (59) 
m c j  

for any value of J. Hence (52) and (53) determining Aj = ( % j / h  ~oo') reduce 
to 

i[Ar, Njl=rbj (60) 

i [Ao', ~o" ] = -No,. (61) 

It can be now seen directly from (56), (57), (60), and (61) that 
{exp[-(i~r/2)Ao']}Sj commutes with both N s and qSo" so that So" and 
exp[(i~r/2)Aj] must differ only by a constant multiple. Thus if (60) and (61) 
are consistent and lead to a solution for Aj then the logarithm of Sj is given 
by (i~r/2)Ao" up to an additive constant and 3Co" =hwo'Aj can be interpreted 
as the Hamiltonian operator for the "intrinsic" harmonic oscillation of the 
particle of rest mass m with a characteristic frequency ~os= (~b/meo'). 

Writing in terms of matrix elements and using (5) and (6), (60) and (61) 
are seen to give the relations 

<niAcin')-- i<nl%ln'> n=/=n' (62) n-n' ' 
(n]Ajln) -<n'lAo'ln' ) 

(nldPs[n' > r ~ - - J  
( # n ,  n')  

: (rl%ln)2 
2 E (r--n) =n, 

r =  - - J  
(#n) 

<n[%lr)(rl%ln')[2r-(n+n')](n-r)(r-n') } 

(63) 

Vn=0 ,  -1 , . . . , - -+J  (64) 
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Among these relations (64) specifies the condition for (60) and (61) to 
be consistent leading to a solution for Aj. Using (6) it can be checked easily 
that for the case J =  1, (64) is satisfied completely. But for any J >  1 
consideration of (64) for the case n = 1, with the aid of (6), leads to absurd 
trigonometrical relations. This shows that only for the unique case, J =  1, is 
the set of identities in (64) completely satisfied. Then (62) and (63) can be 
used to show easily that the matrix A 1 satisfying the relations in (60) and 
(61) for the case, J =  1, is of the form 

1 
2 ~ - k §  1 - 2  1 

- 2  2 f 3 k - 2  - 2  

1 - 2  2 f 3 k +  1 

=Al(O)+kI 1 (65) 

in general with any value for the number k. Since S l has eigenvalues 
(1, i, - 1) and Ai(k ) has eigenvalues ( k -  1, k, k +  1) it can be easily guessed 
that we must have 

log S~ = (i~r/2)A 1 (1) (66) 

or we can write 

S 1 = exp [(i~r/2)Al(1 )] (67) 

The truth of (67) can also be checked directly by computing exp[(i~r/2)A I(1)] 
through the process of diagonalization of A1(1 ). From the above discussion 
we know clearly that only in the case of the 3 • 3 matrix 

1 
S I =  S 

w3 1 wfl t 
1 1 1 , 

w31 1 w 3 

w 3 =exp (  --f-)2~ri (68) 

which is equivalent to the 3 • 3 Sylvester matrix, 

1 
$ 3 = ~  - 

111) 
1 w 3 w~ 

1 w~ w~ 
(69) 
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we can have a representation as 

767 

Sl=exp[(iTr/2)Al] (70) 

with 

1 
A1---- - ~  

2~ -+1  - 2  1 

- 2  2f3- - 2  - 2  

1 -2 2~+1 
(71) 

where A 1 has the unique property that 

i[A1, N1 ] = d# 1 (72) 

i[Al, ~1 ]=  -N1 (73) 

Thus it is very clear that only in the case J =  1 are (47)-(49) consistent 
and meaningful so that there exists an intrinsic Hamiltonian matrix %1 of 
oscillator type associated with the particle of rest mass m such that 

! [%1'  Q1] = P__l (74) 
h m 

i [ %l, P1] = -moJ~Q 1 
h (75) 

o~ 1 _ ~h (76) 
m~ 1 

$1 ___exP[2 (%' (77) 

Motivated by the fact that the above unique Hamiltonian matrix %1 must 
be of great physical significance we shall choose that 

%1 =h~ (78) 

~ , - 1  (79) 
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so that in view of (65) we have 

S 1--exp -~- ~ + I  1 

= e x P [ 2 A , ( 1 ) ]  (80) 

consistent with (67). 
Since A 1(0 ) has eigenvalues (0,-+ 1) as already seen %1 has eigenvalues 

(0, +-h0~l) as implied by (78). The unique case, J =  1, corresponds to the 
situation where the particle is confined to a region of the least possible 
dimension L l = 2  q. So it is very natural to consider that the energy 
eigenvalues of the corresponding unique intrinsic Hamiltonian %1 must be 
associated with the intrinsic energy states of the particle. Then because of 
the fact that Planck's quantum of energy, h%, associated with the 
de Broglie frequency of the particle at rest, % =  mc2/h, would be the rest 
energy of the particle, Eo=mc 2, as given by Einstein, we shall assume that 

~1 ~Wo =mc2/h (81) 

so that the energy eigenvalues of the intrinsic Hamiltonian ~ become 0, 
mc 2, and -rnc 2 corresponding to the vacuum or no-particle, particle, and 
antiparticle states, respectively. It is very interesting to observe that the 
above discussion naturally brings out a close connection between Planck's 
quantum hypothesis, Einstein's mass-energy relation, de Broglie's wave 
theory of matter, and the concept of antiparticle, the product of Dirac's 
relativistic wave equation. Equations (76) and (81) imply that 

~ , h  _ 1 (82) 
~im2c 2 

Now in view of our postulate (IV), in general, we must have 

rIjh = 0 = 1 ,  VJ 
cym2c 2 

(83) 

Let us close this section with the following important remarks: 
(a) Relation (83) points out that even in the asymptotic limit J--, ee or 

the case of continuous q spectrum we should expect the quantity (H/c) to 
have the value (m2c2/h) when c ~ 0  and ~/-~ 0 according to the postulate 
(V). But at first sight a comparison of (16) and (17) with (39) and (40) seems 
to imply that in this case O1/e) = 1. This apparent contradiction disappears 
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if we consider the fact that the quantity (~/~) may have any nonzero value 
in the asymptotic limit when the spectra of q and p are continuous in the 
range [ -  ~ ,  ~]. 

(b) In our opinion the above one-dimensional model of a mechanism 
with an intrinsic Hamiltonian %1 associated with some internal property of 
the particle responsible for the constant value of (~J /%) should not be 
regarded as a purely one-dimensional "mechanical" model which should be 
suitably generalized in the three-dimensional case and rather we should 
regard the result in (83) to be true in case of any direction in three- 
dimensional space irrespective of the situation whether the particle has 
freedom of motion in the other directions or not. Thus while generalizing 
the one-dimensional form of the FDQM given here to the three-dimensional 
case the relation in (83) must be assumed to be valid in all the directions 
independent of each other. 

4. DETERMINATION OF J, r AND ~ls FOR A PARTICLE 
WITH GIVEN VALUE FOR L 

From (23), (27), (28), and (83) it is seen that for a particle of rest mass 
m the basic relations among the quantities L, J, c j, and 7/j which decide the 
physical behavior of the particle are given by 

2~rh 
cjnj = 2 J +  1 (84) 

'lJj _ m 2 c  2 

cj h 
(85) 

J= in teger>0  such that 2J~j ~<L<2( J+  1)c j+ 1. (86) 

Equations (84) and (85) show that for any particular value of J, c j, and ~/j 
are given uniquely by 

2~r ]1/2Ac, 2~rh 
cs= ~ l 2~r X c -  mc (87) 

2~r )n/2 
~j=  ~ mc (88) 

where )~c is the well-known Compton wavelength of the particle. Then the 
"space quantum number" J for a given value of L is fixed uniquely by the 
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condition 

2J  2 ]1/2 L 2(J+1)2  ] 1/2 

( 2 J +  1)~r ~< ~-~ < ( 2 J +  3)~r 
(89) 

as implied by (86) and (87). It is easy to verify that (87)-(89) satisfy the 
condition in (29) as required. 

Let us now calculate the velocity spectrum of the particle correspond- 
ing to the momentum spectrum given by (26) and (88) using the formula 

m/) 
p = (90) 

[ 1 - ( v 2 / c 2 ) ]  ' /2 

due to Einstein. Then it is seen that the velocity spectrum given by 

2~r )1/2 
l)jn = n c, 

2~rn2+2J+l  
n = - J  . . . .  , - l , 0 , 1 , . . . , J  (91) 

is independent of the rest mass of the particle and is characterized purely by 
the space quantum number J. From (91) it is seen that for a given value of J 
the magnitude of the maximum allowed value of v, say Vj, is given by 

2~rJ 2 )1/2 
C (92) V s = v J s =  21rj2 + 2 j +  1 

and is such that lims~ ~ Vj ~ c as it should be. This fact has an interesting 
implication as follows. If a photon has a nonvanishing rest mass (see for 
instance, Jauch and Rohrlich, 1955, for a discussion of this possibility), 
however small it may be, then it would be reasonable only if we associate it, 
in the above picture, with the case, J =  1 and L~ ~diameter of the universe. 
But then paradoxically the magnitude of the maximum velocity of the 
photon, namely, V1, would have the minimum allowed nonzero value for 
any particle. Thus the consistency of the picture with relativistic concepts 
requires that photons must have zero rest mass. 

5. CONCLUSION 

Apart from the requirement that a photon must have zero rest mass let 
us point out also the following interesting examples of the implications of 
the above theory. Since the lowest value of J is 1, L 1 = 2c 1 = (8~r/3)l/2(h/mc) 
should be the minimum dimension of a region which can hold a particle of 
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rest mass m. Thus for an electron with me~9)<10 -3t kg we find L i e  ~ 
10- t2M= 103 fm. This again confirms the well-known fact that an electron 
cannot reside inside an atomic nucleus. But for a nucleon with m n ~ 1838m e 
we find that Ltn ~0.61 fm, which is of the fight order of magnitude for the 
existence of nucleons within nuclei. Further it is worth noticing that this 
value of Ltn is very close to the present estimate of the radius of repulsive 
hard core of the nucleon-nucleon force (see for instance, Cohen, 1971). 

Thus from the above considerations we can conclude as follows. Let us 
consider that the application of current quantum mechanical formalism 
with the representation of basic position operator 0 and momentum opera- 
tor p equivalent to the Schr&linger representation 

( q l O + ) = q ( q [ q , )  (93) 

( q l  P ~ )  = - ih ff-~ (qlq~) (94) 

in accordance with the Heisenberg relation 

[0, /~]=ih (95) 

as really an asymptotic approximation to the actual situation where position 
q and momentum p of a particle of rest mass m moving within a finite 
one-dimensional region of fixed length L take only certain quantized values 
as given by 

q = n c s ,  n = 0 , + l , •  .... .  •  (96) 

p = n B j ,  n=0,  • 1, +2, . . . ,  •  (97) 

J=integer>O such that 2 J~ j~< L <2( J+  1)~j+~ (98) 

Then for a particle of given rest mass m with a fixed value for L the basic 
quantities J, Es, and ~j are determined by the quantization rules: 

2~r l l /2~kc  27rh 

e'I = 2-J-4--(] 2 rr 7~ + - ' m c  
(99) 

27r ) 1/2 
~.i = ~ m e  (100) 

2 j2  ]1/2 L 2 ( J + 1 )  2]1/2 

( 2 J +  1)~" ?% ~ ] 
(101) 
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I t  seems quite plausible that the quantum mechanical formalism applicable 
for particles confined to move within very small regions of space, such as for 
the constituents of atomic nuclei, takes a finite-dimensional form corre- 
sponding to small values of the "space quantum number" J.  In that case the 
basic position operator Q and the conjugate momentum operator P will 
have to be represented by ( 2 J +  1)-dimensional matrices given, respectively, 
by 

(n I Qj[n') =nEjS,,, (102) 

0 
(nlPsln')= I inj [ 2rrJ(n-n')  ] [wcsct I 

if n=n' 

if n~n '  

n ,n '= - J , - - J +  1 . . . . .  -- 1,0,1 . . . .  , J - -  1, J (103) 

The other operators of the particle must be obtained from their normal 
quantum counterparts by the replacement procedure 

O~Qj,  ~ P j  (lO4) 

Except for the replacement of the SchriSdinger operators by finite- 
dimensional matrices according to the rules in (99)-(104) all other aspects 
of the usual quantum theory are valid in general. 

The extension of the above scheme to the isotropic three-dimensional 
case should be straightforward with only a few minor necessary modifica- 
tions if we assume that the quantization rules in (99)-(101) are valid for any 
direction and independent coordinate operators commute with each other as 
usual in the normal quantum theory. 
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